


produced. One example should suffice as an object lesson. My colleagues and [

wanted to measure the flux pinning due to dislocation loops produced by neutron

irradiation in an alloy system in which we could change the thermodynamic critical
field H by changing the composition of the alloy. We chose the NbMo system because
@

there were no long lived radioactive decay products produced and because the pub-

lished Nb-Mo phase diagram shows complete solid solubility so that HC could be de-

creased continuously to zero by adding more and more Mo. When we examined irra-

diated samples in the transmission electron microscope, we found no dislocation
loops but rather a quasi-periodic contrast modulation along certain crystallographic
directions. With more work we determined that the Nb-Mo system undergoes a spinodal
decomposition at low temperatures that is accelerated by the neutron irradiation
and that one of the peaks in }"p as a function of magnetic field was due to the

"matching" of FLL spacing to the spacing of the compositicn modulation[5]. HNeed-

less to say if we had not looked at the defect structure of our samples, we might

Y

still be trying to concoct a flux pinning mechanism that would give us a "matching"
peak from an array of dislocation loops.
Although there has been much interest in irradiation of compound and alloy
*
superconductors for technological reasons, we will confine this paper to irradiation

. - . . . "o 1 . . . . v
effects on the pinning in "dirty" niobium, i.e., Nb with a Ginzburg-Landau parameter

KI(K‘I = —..‘n:ﬂ which exceeds 1.2. These values of k are above the upper threshold
| &

(

for type II/1 superconductivity[6]. At x's lower than =1.2 the superconductor ex-
hibits a first order phase transition (discontinuous increase in magnetization) at
H, due to an attractive interaction between vortices. The only samples that may
be below this threshold are the ones used for the very low dose electron and
neutron low temperature irradiations. The advantage of using niobium for this
comparison is that it should be possible to compare the effects of different

U

defects on 1"‘. without having to correct for changes in the properties of the

* These materials will be discussed by A. Sweedler and by S§. Sekula in other

papers in this conference.




The magnetic field dependence of void pinning appears to be somewhat dif-

ferent from either cascade or dislocation loop pinning in that there is a broad

maximum in the pinning that occurs at relatively low reduced fields between

b = .7 and b = .3 for all samples. However, there is no unique shape to the Pp
vs b curve; different microstructures give different shapes as in the case of

the other defect species. Furthermore the Pp vs b curves are more sensitive to

microstructure at low b than at high b. For example the ratio of FF for two dif-

ferent void microstructures is at least a factor of two larger at b +9 than at

b = .9. This enhanced stri:ture sensitivity of the pinning force at low b is even

more strikingly evident in the F“ vs. b curves (Figure T) for the void structures

produced by neutron irradiation where the curves practically superimpose above

*
b = .9[25] . This behavior is very similar to that of the samples with the peak

effect.

The peak effect is thought to arise due to the softening of the FLL at
inductions just below BCQ[EY]. Two possibilities exist for the mechanism limiting
Fp on the high b side of the peak. In the first proposed Campbell and Evetts([2]
full "synchronization" of pins occurs at the peak and further softening of the
flux lattice at higher b does not result in further increases in Fp' In the

second[28] it is supposed that the FLL can plastically shear around the strongest

pins leading to a Fn that is insensitive to fp and only moderately sensitive to
-

pin density. These models are discussed in more detail elsewhere[20,L]. Fresent

evidence that seems to favor the latter model is:

1) The disappearance of flux line lattice history effects on ¥ _at b's

}\
greater than the poak[BO,Bl,B?]

-

2) An abrupt change in the character of the voltage-current characteristic|33

at b's just above the peak.

¥ Errors in determining H,,, which are especially aard to avoid when
3 3 F= o ¢ A . i g . p
measured resistively due to surface superconductivity, will shift the“curves
in Figure 6 significantly.




of the objectionsto the

Recent theoretical developments have combined to eliminate some

’ . e S
FLI, shear model. In the original model it was necessary that line plnning oc ur (28],

s

Schmucker[34] has shown point pins can initiate FLL shear and that depending on the

aspect ratio of the pins any b dependence of Fp petween (1-b) and (1-b)° can be

obtained in the region near B. . In Schmucker's model unfortunately there is no
2

possibility of a crossover from pin breaking to a FLL shear mechanism as b in-

creases since both mechanisms have the same b dependence in the point pinning

limit, Brandt[35-39] has recently shown however that for short wavelength defor-

mations both chh’ the tilt modulus, and cll’ the compression modulus, of the FLL

become very small at “c?' [It had been previously accepted following the zero
2

wave vector calculation of Labusch[L0] that Cll and Chh increased as B and were
oy
much larger than C66 near R(.r\. The shear modulus C66 decreases as (1-b)“ near
[ =

B(‘ , & result Brandt extends to all wave vectors.] Schmucker and Brandt[L1] have

2
shown that the displacement produced by a point pin increases drastically above
p

b = .8 whereas with the Labusch approximation this displacement is constant.

P

s

Since FLL shear at a point pin involves creation of a flux line la
tion (FLD) loop whose line tension is proportional to VEIZEZ;‘ and since only
chort range displacements are produced by a small loop one expects that the force
to create a FLD loop above b = .8 will be significantly less than that originally
computed by Schmucker[34] who used Labusch's expression for Chh' The theoretical
situation regarding the peak effect and the interpretation of the high field F

is thus far from settled at the moment, but many new ideas have surfaced which are
currently being explored. In any case with the exception of the very weakly pin-
ning electron irradiated Nb, irradiated niobium samples appear to behave near i(c;\
very much like Nb and its alloys containing other defects[42]. 1In what follows

our discussion will center primarily on the structure sensitive I"p at magnetic

inductions well below B .




Temperature Dependence of Fp'

Pinning force vs. b curves have been measured at various temperatures only
s . ) Piasine B i Lie
for void structures produced by Ni ion irradiation[2k]. igure shows the
temperature dependence of the F_ vs b curve of one sample in Figure 6. While
P

F

changes in temperature produce large changes in the magnitude of the peak in =

they leave its shape essentially unchanged. Indeed if F)/Fp where FP is the
max “max
value of F at the peak is plotted against b all these curves superimpose into a
P
. . . . . 3 . I'
single master curve. This scaling behavior first discovered by Fietz and Webb[h43]
is exhibited by most hard superconductors[28]. A suitable scaling parameter is

Bc? so that one has the phenomenological expression for Fp.

where g(b) is only a function of reduced field and can be evaluated from any
Fp vs b curve at constant temperature, such as those in Figs. 3-7. For void

pinning Freyhardt[24] finds that m = 4 at low temperature but that m increases to

V2 at temperatures near T .

Although scaling has been found to fail badly for a number of superconductors,
usually this can be attributed to: (1) samples that have a paramagnetically limited B,
at low temperatures[lUli], (2) inhomogeneous samples in which a minor but continuous
superconducting path exists with a higher Tc than the majority of the sample[45,46,LT],
(3) samples with a sufficiently regular defect microstructure that a peak in the vin-
ning force develops due to a matching of a FLL spacing to the spacing of defects[i8-551,
Since the irradiated samples described are homogeneous, are non-paramagnetically
limited and have a random defect structure (with the exception of the void lattice),
it is a reasonable assumption that the scaling law will hold approximately for these
materials. Nevertheless experiments on the temperature dependence of flux pinning

1

in samples with well characterized dislocation loops as well as samples with cascades

should be carried out.

‘é
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|
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Summation Models:

Before beginning our discussion of the effects of pin density on flux pinning,
it will be useful to review briefly the two models currently used most often as
solutions to the summation problem. One model proposed by Dew-Hughes[58] is that
the FLI, in hard superconductors is amorphous and flexible enough to optimally

contact all pinning centers in the material. He then obtains the direct summation

L : 2 ™ ;
B % p(l)fp(l) (2) |
where p(i) is the number density of the ith species of defect with maximum elemen-
tary interaction force fp(i). Whatever one's view of the radical assumptions nec-
essary for this direct summation to hold, it has one undeniably useful feature

that has not been emphasized in the past. It predicts an absolute upper limit

for the pinning force. It is not possible for any summation model to result in an

Fp greater than sum of the maximum interaction force of all the defects.

The point pinning model developed by Labusch[57] is much more widely used

currently because it explicitly takes the rigidity of the FLL into account.

In the form this model is usually cast F_ becomes
p

]

(9}
~—

ERETIN. LI S 1
Fp = (“oz) ﬁ o(l)fp(l) [fp(l)/hnaoue

ff

where a is the flux line spacing, 4 is the half the interaction width of the

O

pinning center which approximately equals the coherence length £ for small defects

k)

and Mape is an effective modulus for deformation of the FLL by a point force nor-

mal to the flux lines([L0].

. 11_“' (G (4
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In Eq. 3 the term in brackets in the sum is equal to the dirplacement u of

the FLL by the maximum interaction force f . The ratio u/a_can be considered




effects

an efficiency factor with which to correct the direct summation for the

of FLL rigidity. Since an arbitrary FLL displacement u produced by it fect implies

an elementary interaction force f = ()‘ll:l’)llpl,r) u = ku the FLL responds as an elas- |

tic spring with spring constant K equal to

An important restriction in Labusch's theory that is often ignored in pt
that £ satisfy the threshold -riterion, which can be written as [en ).

: (6)

If £ is less than threshold the Labusch theory predicts F =0 and unless the ele-
!v

mentary pinning force is well above thresh y1d l“p is significantly smaller than

that predicted by Eq. 3. An expression similar to Eq. 3 can be derived from the

dynamic hysteresis of FLL motion past pins[58-60] and exactly the same threshold

criterion applies. There is also an important and dubious assumption regarding

the nature oi the energy well giving rise to the elementary intersc A

the defect hidden in both the statistical and dynamic theories of pinning; we

will consider this assumption in detail after comparing theory with experiment.

)

To facilitate this comparison let us rewrite Eq. 3 as
;\
I3 p = pPX tl‘ (7 \

and Eq. 2 as
F = pf (8)

3 3 g o sy g - i e
where € = &/(Ura “p__..)s f = Sp(i)f “(i)/p and £ = Ep(i)f (i)/p. We will sub-
o eff p 1. P P p

sequently ignore the fact that <f “> # <f > on the grounds that the errors pro-
1Y ‘

n
duced in doing so are relatively small[oh,21]. When actually comparing f for
P

microstructure consisting of a range of defect sizes and thus t ‘s, we will
I

2y 3
<

actually use *-‘I'P' >* as the appropriate 1"‘ for comparison purposes.
i
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), or the pin-

Let us now introduce & new quantity, the specific pinning force @,
ning force per defect defined as

Q = F /p (9)
p

e

If either of the

which can be computed from the experimental Fp and p values.
two summation models is correct Q should be independent of defect density and thus
be a direct measure of the maximum elementary interaction force of a single de-

fect and the response of the FLL to that force. If the direct summation holds

Q = fp (10)

whereas if the Labusch statistical theory holds |
g = ef (11)

Even if neither summation model holds, if we can experimentally establish that the spe-
cific pinning force is approximately independent of pin density we can use Q as a relative
measure of the pinning effectiveness of different defect species under conditions

where the FLL rigidity is the same. In the next section we will show experimen-

tally that if p is not too large, Q is in fact independent of p.
Dependence of the Specific Pinning Force on Pin Density:

Since the specific pinning force density will be sensitive through its
strong dependence on fp to the size of the pinning defect (defect size is one of
the most important factors in determining fp[h]), the best test of the pin density
independence of Q is to introduce more and more defects of constant size and deter-
mine experimentally whether Q remains constant. Here low temperature vrodisti
damage experiments are unexcelled since by increasing the neutron or electron
fluence we can increase the cascade or Frenkel pair density without changing the

v4

defect size distribution, which is a function only of the reactor neutron energy




energy. Of course to fairly compare Q's if the statis-

spectrum or the electron

tical theory is correct we must make sure that the FLL compliance, represented by C

in Bq. 7, is held constant, and this requirement poses a problemn since !'.’. and «

inerease during the low temperature irradiations due to the increase in resis-—

tivity. However it turns out that the FLL compliance at constant b is approx-

imately constant over the range of « from 1.2 - 3 that obtains in any of the
irradiated Nb specimens. [The increase in £/a at constant b with increasing ¥
O

is almost exactly balanced by the decrease in l/“ef'f"] Therefore if we compare Q

Ao

at constant reduced magnetic induction b for samples of differing k we are making

the comparison at a constant FLL compliance. We have chosen to make the comparison

2t b = .55 which is a low enough b to be below the complications of the peak

effect near BC? but high enough to permit the normal high field approximaticns

for computing u and I'P to be used. Furthermore, since F_ for most samples vari

eff p

slowly with B in this range, the comparison is insensitive to small errors in

defining Bg

2"
To determine the effects of defect density on Q we first establish a value

i
of Q(QO) at a density of 10° S 5. This value was chosen because all the low tem-

perature experiments have experimental points at densities reasonably close to this
cne. We then plot in Fig. 9 the ratio of L‘J,/Q,U vs. p on a log-log plot. The open

triangles represent the cascade pinning experiments of Berndt et al.[15]), the fil-
led triangles the cascade pinning experiments of Brown[1A] and the filled hexagons

. Remarkably the

the Frenkel defect pinning experiments of Ullmaier et al.[T7,8
results which span about three decades of defect density appear to fall on a single
universal curve. The decrease in '-.\/L.‘” above p = 5x10 1 san be gualibe
stood based on a modification of a simple argument given by Ullmaier[61,7

'

makes the reasonable assumption that at high pin density the
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1

to fluctuations in pin density between neiehboring volumes of superconductors and

that for purposes of determining these fluctuations one should average Wet 1
|
‘ 3 3 . |
& 'he > > sr <n> of pins in £~ is p€ and the average dil- |
volume of £°. 'The average number <n of pins in &~ is P¢€ ;
|
. : : e o SO |
ference <An> in the number of pins between neighboring volumes is vpf, bu t 1
increased proximity of defects to each other must eventually result in a decreas
3 3 p i ‘o i the FI T we make
in the effective interaction energy of a single defect with the FLL. If we mak
the very crude assumption that this decrease goes like the linear distance be-
; -1/3 . ST I, AN T, i o
tween defects p in this density range f <« <pp>(p) ronstant and ¥ W
3 - ~ 1
™ ¥ i 1 P . ( v " - y < 15
be given by £ - £ or & “Cf implying that for p >> == Q goes asymptot ly
p Iy &
as — is observed.
(
For our purposes however the most important aspect of Figure 8 is that
indicates that below a defect density of about &x1( the specific pinning force

Q is independent of defect demnsity. Note that the experimental range of void and

dislocation loop densities mostly falls below this density so that we shoula pect Q
x
1

to be constant for a given size void or dislocation loop. It will be possible

+

to further test the independence of Q for voids in the next section.
We note in passing that the independence of Q at much smaller p's can be
established in the case of precipitate pinning from the results of Antesberger

and Ullmaier[62] who investigated pinning by Nb_N particles in NbTa alloys over

18 -3

X 3 19 =3
the density range 4xl0 m

to 4x10 "m and the results of Bibby[63,1] who in-

vestigated pinning by 0.8um diameter tungsten particles in Pb-Bi alloys over the

1 2 o
" L =3 L -1 S - % . : b
range 1x10 m to 5x10° 'm ~. While it would be very desirable to extend the
range of density covered experimentally in Figure 8 and perhaps have more < 1d
3 -2

points below p = 10 , we consider the proportionality between 1 ps &nd

"1"n1",‘v'1‘.hw T Q Y} O X be 1 1 nably well established in this 1 101

*  Thi tetement clearly not true for the llest dislocation loops which
have a very high p. We could use Fig., 8 to correct the for this densit
lependence. Since the correction does not significantly change the eventual

conclusions we will ignore it in what follows.
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!“‘X"‘HJOH\‘O of the :"l‘(“'”‘ik' }'i““i,m Force cn Defect Size and ';‘:"N‘;

The specific pinning forces for the defect conditions listed in Table I were

For dislocation loops and voids the specific pinning force

computed at b = .55.

should be a strong function of the loop or void diameter and the results shown

on Figure 10 bear out this expectation. As the dislocation loop diameter in-

(o} o]
creased from 254 to 160A, the specific pinning force increases almost three orders

T -1k

of magnitude from 10 N to 10 diameter

N. Similarly for an increase in void
15 =11

from about 50 to S00A, Q increases from just over 10 N to just under 10 N.

The open circle void data represent the neutron irradiated samples whereas the

b2 ’ ; .
filled circles represent the Ni ion irradiated specimens. HNote that although

the void densities differ by about one order of magnitude for comparable void

diameters (Table 1), there is excellent agreement between the two sets of data,

providing one more indication that Q is indeed independent of density over the

range of void density. The specific pinning force for Frenkel pairs and cascades

are also shown althoush the "diameter" in these cases is not well defined. I'he

downward arrow in each case represents the decrease in Q with inereasing density

shown in Fig. 9. In comparing theory with experiment one would choose the largest

Q@ value since this one will represent as close as one can come to the Q for isolated

defects.
The Q values are useful for another reason. Since we have calculated Q for
b = constant and thus at constant FLL compliance a comparison of Q values between

we can conclude that a void is about

me defect and another is meaningtul. 'hus

20 times more effective as a pinning center than a dislocation loop of the same

diameter, that a cascade is about an order of magnitude less effective than a

dislocation loop of roughly the seme size, and that a Frenkel pair surprisingly
O

v
effective than a 25A dislocation loop. The

is only about a factor of 3

In light of the result reported by Professor Schilling (previous paper) that inter-

) Y

stitials are mobile and cluster at h..




specific pinning forces are usetul in anotnher way however. They maike possible

4 very dramatic comparison between both summation models simultaneously. To make

such a comparison it is first necessary to make estimates of the elementary inter-

and this is the subject of the next section.

action forces

RLEMENTARY INTERACTION FORCES

There are a large number of possible mechanisms by which a defect can inter-

sct with the flux line latticel 2, 3,4]. However in the case of small voids and dis-
location loops the situation is reasonably clear cut and one can claim with some
~ertainty to know what the pinning mechanism is. Before discussing each of these
cases in detail, it is first necessary to discuss the structure of the FLL. In
the Ginzburg-Landau-Abrikosov f,}u-or*.\/[b.‘l.h‘\! the superconductor is described by
an order parameter ¥, the square of which is proportional to the density of
superconducting electrons. If '40 is defined as the order parameter in zero field
at the temperature of interest and ¢ is defined as ‘{'/4” the reduced order para-
meter the solutions of the Ginzburg-Landan equations in the mixed state produce

v

a periodic ¥ with nodes at the vortex cores (flux line po:ti(ix.m;:). We will let the

b = .8 from the paper

=

/mbol w represent l; [ and show in Figure 11 a map of
by Brandt[66]. At the core of each vortex is a region approximately the coherence
length § in radius that is depleted in superconducting electrons but w rises to

a maximum value approximately midway between the vortex cores.
Dislocation Loops: Strain Field Interactions:

Accompanying this spatial modulation of w are modulations with the same
periodicity in the volume and the elastic constants of the erystal[2,67,68]. In

the core of the flux line the erystal is slightly denser (by about 1 ppm in Nb)

and stiffer (by about 100 ppm in Nb). 'The volume modulation gives rise to a




stress field[2,69,70). A defect such as a dislocation loop that produces

periodic
n strain field in the crystal lattice will interact with the FLL via the int

action between that strain field and the stress field of the FLL (this is the so-

It is also possible for the de-

alled parelastic or first order int.ot':u,'t,inn[}’ﬁ]).

fect to interact with the FLL via the dielastic or second order interact ion{ 73]

between ithe elastic modulus modulation of the FLL and the square of the strain

field of the defect.

The first order interaction between a dislocation loop and the FLL was cal-

cutated by Kramer[70] and by Pande[73]. The dielastic interaction has also been

‘alculated by Kramer[70] for the dislocation loop and it has almost the ssme
jependence on loop diameter as the parelastic interaction. OSince the parelastic
interaction predicts an attractive interaction between an edge dislocation and

a flux line core in agreement with direct experimental observations by Herring[ 7h,2)
it must be somewhat larger than the dielastic interaction. Accordingly we shall

use the results of the parelastic calculation to determine 1';‘. Since the

dielastic interaction is of opposite sign for a small interstitial loop (the loop
is attracted to the flux line core by the parelastic interaction and repelled by

the dielastic) the parelastic f'p will if anything be an overestimate of the true

f for such loops and an underestimate of the true f'p for small vacancy loops.

A map of the interaction force for a dislocation loop in a plane perpendic-
ular to the magnetic field is shown in Fig. 12. The crosses represent the positions
»f flux line cores and the contours represent the locus of all positions of the

161

loop where it will experience the same total force. Because of the translational

etry of the FLL, the force exerted by the loop is periodic with its position

in the FLL. We will take the maximum value f of the interaction force to be its
;\

value at x = a /b, y = 0. The dependence of f on dislocation loop radius is

A
() }w




narticularly simple as shown in Fig. 13 where numerical values are those for a

dislocation loop in nic bium[70,21]. For smwll loops 1[' increases proportional

~ o

to DY but reaches a maximum and reverses sign for larger loops (the magnitude of
f only is plotted in this figure). Pande[T73] has shown that this D dependence
; )

is given analytically by !‘"I,(!k,)h) where a is a constant, k = 2n/a and '1] -

Bessel function of order one. It is to be emphasized that the D dependence of

3 v

- loops is a property of the disk-like symmetry of the locp and is independent

v

of the detailed interaction mechanism.
Voids: Core Interactions:

While there is roon for doubt about the relative magnitudes of the two st

field interactions with the FLL, the interaction mechanism of small voids with the
FLL is clear[2,3,2k]. If we consider an isolated vortex and create a small void in

the superconductor far from the vortex where w = 1, we must destroy superconduc-

tivity in the volume V of the void and so lose the superconducting condensation
energy Su H “V. On the other hand if the void is at the vortex center w = 0 and
o ¢
there is no energy penalty. Clearly there will be an attractive interaction be-
5
tween a void and a vortex core with an energy of interaction E, = Ly H V.

1ht o €

Since w rises to 1 at about one coherence length from the isolated vortex core,

the elementary interaction force l'p is approximately

S o B
f‘p ‘uoxlc V/E (12}

This expression is used by Freyhardt[24] to compute the order of magnitude

f“ for voids. He found this core pinning interaction to be much larger than
I
the parelastic or dielastic interaction between the stress field of a void due 't

its intrinsic surface stress or the stress field due to possible depletion or

acceretion of solute from or to the void surface. It can also be argued that for

small voids any perturbation  the magnetic field (:!mi thus ‘he marnetic enerev




takos place over the j netration depth must be very small.

Any magnetic interaction for a small void will be smaller than the core inter-—

To compute the void interactions with the core in the flux line latti

action. I'o

the local free energy function proposed by Campbell and Evetts[2] can be used.

e} ) 6 o 12 :
E =% H “[EVw-w"] + 51 h (
0. C O

where h is the local field. We find as do Campbell and Evetts that the most

“w. The vortex lattice has lower energy if the voi

important term is 'mp \h’

( { 3y
is at points of positive curvature of w, i.e., the vortex cores [see Figure 11|,
than in between the voids where there is negative curvature. If we represent the
void by a function V(r') which is 1 inside the void and zero outside of it, the
-

interaction energy as a function of position r in the FLL is given by the
-

integral

= - Ik "‘,\ = = 2 ey ? .1 !
B ,uom £ f[v(y_ v m(LI- )]d‘x_ (1

int
This integral may be evaluated using Fourier transforms as shown previouslyl4

‘

and differentiating to find the interaction force we arrive a

xr‘ A 4 y
f =1Ly H 1-b) =[sin - —‘}-— + si e e ) (1
X ZUO e ( b) 3[ k(x '-%) in k”( /3 } L4
2 A N Vv "11\‘\,
f ='u H “(1-b) =>=[sink (x - %) - sink (x - %=) + 2 sin —=] (15Db)
y o ¢ 2Y 3 o V3 O V3 v oS
3
gn 2. 3D ey .
where A = ESk ™ — o —=3J.,.(g.D/2). Here k = 2nfa ; g 1is the magnitude of
Q P, 1 1
b (o] f‘fl V{'ll V] ¢ 1 [&] O
the primitive reciprocal lattice vector of FLL (g, equals 2k V3 and J ., \(g"i‘/,“\
1 1 O S/ ¢

)

is the Bessel functicn of order 3/2. If we evaluate the interaction force at

x =a /3, y =0 as before we find

Equations 15a and 15b for the void gives the same interaction force map shown
previously for the dislocation loop [Fig. 12] as indeed will any defect with radi

symmetry aboul the magnetic field direction[70]. It is also obvious from Eq. 5

5a )

£ =Y H “(1-b)A (16)




s¢+y onf

that the interaction force oscillates with the periodicity :

produces alternating positive and negative forces as

For very small voids Eq. 16 reduces to

o 2° 3 2
£ o= = g% wH “(1-b)V
D 9 o e

This is essentially the same expression found by Campbell and
b= .55 it gives results within a factor of 1.3 of the values
by Freyhardt[?h] and Koch et al.[25]) for an isolated vortex.

of f on void diameter is shown in Figure 14. The elementary

increases as D3 corresponding to Eq. 17 for small D but then

it moves

through

the

FLI.;

Lthe

the

fefect

FLL.

(17)

Evetts[2] and at

computed from Eg. 13

The

dependence

interaction

reaches

(s}
. . r . . S = .
and decreases, actually changing sign at D = 1000A [only the magnitude of

shown on Figure 14]. The decrease of fp to zerc [correspondi

of J3/2(ng/2)] has a simple physical interpretation. At certain

ng t

o the

void

Z

di

=y

force

a maximum

f_is

ameters

which depend on the FLL spacing a_, when a vortex core leaves the void, another

one enters the void and there is no net change in energy. None of the voids in

the experiments discussed are this large but the fp for some of the largest

voids must be decreased somewhat from the value predicted by

it should be emphasized that the fr computed for small voids
)

kg -

from the

L

Finally,

action must be considered to be the most accurately known of all the elementary

interactions. Its magnitude computed here should not be more

Ehan

factor of two removed from the correct value. Certainly there is

that it is proportional to the volume of the void as long as

In passing we note that one can compute the core interaction with a

the void is

disk or cylinder shaped void or precipitate oriented normal to th

using the same method as above. Equations 15-1T7 hold if A is

ntD J > Df2
_P_VT mtl (flr/ )
Q

a

no question

e

field

now given by

small.

small

directions

(18)
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where Jl is the Bessel function of order 1, t is the thickness of the disk (or

length of the eylinder) in the field direction and D is the disk diameter. How to

compute the elementary interaction forces for the cascades and Frenkel pairs is
much more uncertain although attempts at order of magnitude calculations have been
made[15,16,7]. We will defer discussion of the fo'ﬁ for these defects until after

we have compared the summation models with experiment using the void and disloca-

tion loop data which will be the subject of the next section.
COMPAKING SUMMATION MODELS WITH EXPERIMENT

We first make a plot of specific pinning force versus dislocation lcop
diameter and place on this plot lines which represent the two summation models,

i.e., Q = fp for direct summation and Q = Cfp2 for the statistical summation.

Iy~?

For Nb at b = .55 and 4.2K, C = 1.2x10 . The results are shown in Figure 15
and demonstrate that although the dislocation loop specific pinning force depends
approximately on fp as fp as predicted by the statistical theory, the magni-
tude of Q is about three orders of magnitude larger than predicted by the theory.
At the larger dislocation loop sizes especially the magnitude of @ is closer to
that predicted by the direct summation. Even more disturbing we observe that if

o]

Q continues to increase as fpa it will apparently cross and become greater

(o]
than the direct summation line at a dislocation loop diameter greater than 500A.
As a final Jjarring disagreement between the statistical theory and experiment

we note that by combining Eq. 6 and Eq. 11 we can determine the value of Q that

will satisfy the threshold criterion, i.e.

A Lc 2 1k (19)
®Q . = By 8 v ;
"min Pere %o =

s T , o =12 e

For niobium at L.2K and b = .55, Qmin = 2.5x10 N. A glance at Fig. 15 reveals

the experimental Q values are from 5 to 2 orders of magnitude smaller than

In this range the statistical theory predicts that we should measure Q =




Figure 15 shows the corresponding plct of Q versus |

2 m 3 - S
ence of £ on D is [)2, not D° as in the dislocation loop case. The data dor
0

run parallel to either the fp or the Cfp

4

) for voids. The dej

end-—

10t

line over the whole range of void diam-

oters. Rather for small voids the dependence seems to be approximately as the
3/2 power of fp with the power decreasing to something close to one for the
larger voids. As in the case of the dislocation loops the magnitude of the

two models and is some-

specific pinning force is between the predictions of the

what more closely predicted by the direct summation than by the statistics

theory. Also as in the case of the dislocation loops most ot the speci

ning forces lie below the threshold criterion and all of the ealculate

1o

interaction forces lie below the threshold criterion using fp as a basis (Eq

Before attempting to modify either of these theories to account for the

experimental data we must first have confidence that these data are correct, par-

d element

5 f.)).

ticularly the f‘D values. We can in fact make a consistency test with the data

at hand since the fp's for the dislocation loops and those for voids arise from

two totally different mechanisms and since the Q values of the large dislocation

loops and for the small voids overlap (e.g., Fig. 10). 1If both computations

of

f are correct a plot of specific pinning force versus fp should yield a single

master curve. Such a plot is displayed in Fig. 17. The superposition between

the two sets of data both in terms of slope and magnitude is close to being per-

fect. One can now think of this master curve as the experimental solution to the

summation problem, a solution that corresponds to neither the statistical theory

or the direct summation. At low fp's it parallels the statistical theory (there is

a hint that it becomes even steeper at the lowest f}'s) but is displaced upw

2 ; : ;
from the Ct‘p line by about 3 orders of magnitude. At higher f‘n‘s: it curves

i

a progressively smaller slope until at the highest f}'n it runs parallel to
)

direct summation line and achieves a magnitude that is only a factor

ard

to

the

s

i 3




the magnitude of the specific pinning force

How accurately do we know the t‘p’s on this
we know them now accurately indeed.
interaction mechanism for small voids is core pinning and since all «
of the core pinning f‘P give essentially the same answer, we know the 1'¥‘

small voids rather well. Since the large dislocation loop Q's and 1‘(\'::

those of the small voids we must also have computed the magnitude of the stz

Since we know that the largest possi

master curve? T will argue

predicted by the direct summation.

raleulat

+ .56

tle
T
r the
werlap

field interaction between the large dislocation loop and the FLL accurately.

Finally once one point on either the dislocation loop T'I Vs
- 7)

or the void f‘p vs D curve (Figure 1h) is established, computing the r“.

£

DT

void or loop is simply a matter of determining the geometry of the defect

scaling approximately as D~ for the void or D” for loop. Thus the points for the

q

larger voids and smaller loops are accurately determined as well. A last

D curve (Figure

and

consistency check is that none of the specific pinning force points lie above

the direct summation line. But note that if the master curve in the void

had not bent over to a lower slope but instead had followed the extrapola

4

another

regime

ion

the dislocation loop data, the i'p's for the largest voids would have exceeded

the direct summation by at least an order of magnitude.

DISCUSSION OF SUMMATION MODELS

It is now appropriate to discuss where the summation models go wrong

in what directions we should go to find a theory which can account for
empirical summation master curve. Since it is not difficult to think
reasons why the curve should fall below the direct summation line, le

trate on the statistical theory of Labusch. We will find that the f

(=N

of F
p

in fact an artifact of the pinning potential curve labusch chos

the

and

)

o




=26

ns start by observing from Fig. 17 that the true range of validity of the Labusch

theory is strictly limited. OStrictly speaking it cannot apply below the thresheld
1 1 ' —Jl . a3 » o3 Ty ¥ 3 }"'l TP
criterion or an 1p of 4x10 " § in niobium and it certainly cannot apply above

-9 . " - - . . ]
an f of 10 °N because an extension of the pr curve will bring it above the

-

® 2 ) 3
direct summation which is clearly impossible. The fp dependence Labusch obtains

is intimately connected with the threshold criterion and his choice of a poten-

tial function to represent interaction energy between the pin and the flux line
for

lattice. He chose a single potential well for which the energy was zero

l<;>/§ d where d is an interaction distance from the center of the well. When this

vy —

function is differentiated to obtain the force of the defect on the FLL, the f v
sus x curve has one positive-going maximum and one negative—going minimum and then

goes to zero for large |x|. Somewhat more simple wells are considered by Ullmaier( 3]

Such a force (and energ)

and Lowell[77]; both derive the same fpz dependence. O
cannot correctly represent the interaction of the defect with the FLL since E and
f are periodic functions with the periodicity of the FLL (see Fig. 12). Such a
sne dimensional periodic well is shown schematically in Figure 18a along with the
f vs. x curves derived from it as the strength of the interaction is progressively
increased (Fig. 18b, ¢, d). The potential is chosen such that the f vs x curves
are simple triangular functions for simplicity but that choice is not essential

to the argument. Let us place the well at an initial random position xo with res-
pect to the FLL and then turn on the interaction[78]. The FLL will be displaced

by a displacement u according to the equation

df
+_—.— (Y
dx = (20a)
X0

ku

or {.|
: N
B ‘(\1t/l‘14\"|

K |

) B (20b)

* TLabusch[57] in fact recognized this upper limit and developed a "fluid
approximation” for a highly distorted flux lattice which changes the u e
eflt

in Eq. 6.




|

where k is the spring constant of the FLL (kq. T). As long as

x so that the FLL is dis-

everywhere one can always find an initial position »

placed to any arbitrary position X, with respect to the defect. Since the

well is symmetric with respect to x = 0, in the final state with a large me

of randomly initially positioned pinning centers there will be Jjust as many

and the total

positive as negative force interactions in the displaced positiocon
integrated force ¥ will be zero. OSuch a well is below the threshold criterion
‘\
and is shown in Fig. 18b where the slope of the dashed line represents *=. B
af 2 S " : s C Lo i Sl s
Ik|> ——las in Fig. 18c there will be a region of the well where the FLL cannot
ax

~ 2 3 ryes ) . o 1oaf -\ I v e
come to rest. Assume a FLL is being pushed to the left (-x d
force. If for a particular defect the maximum f is exceeded the FLI immediately
jumps to a new position represented by the intersection of the dashed line

with the f(x) curve. No FLL position between the peak force and that intersection

is stable. Consequently an integration of the force provided by the well over all

possible stable FLL positions results in a net positive force. The integrat ion
is from some minimum force fxi determined by the intersection to the maximum
nin

force. In the single potential well used by Labusch this minimum force cannot be

S
¢

‘s daf : . - - =
positive and for dx >>k this leads to F_« f{ . For a periodic well however
. ‘\ Al
fmin can be greater than zero (see Fig. 18d) and in fact approaches f‘¥ for
df . = o s )
a% >>k . Under these circumstances I-i « f . If we proceed to analyze the problem
o &l }\

‘

in detail as outlined in Ullmaier's book|[3, p. 58-60] we find that Q for the
5 F !

potential of Fig. 18 is given by

B
I
by
—
=5

|
it
—
b -
—
—
5
+
~—
-
—

where f‘t is the threshold t‘l (for this £ _=ka /b = ma_ n__..)s n the other

using a single well as Labusch did we get




- 1-:» \_-\‘ ~+ . /n*- . -,.},
Q = €f “(f ~Ff (tp H"),(lpf‘.) (22)

Plotting these two functions on a graph of § versus 1"‘ we get the curves shown

on Figure 19. The correct soluticon for the periodie well rises steeply above

the threshold and then becomes asymptotic to the direct summation for an !"‘

about one order of magnitude above the threshold. There is no extended region

s}
over which F is proportional to £ “ 1t Although the general shape of this curve 1s
p p

similar to the experimental master curve the approach of the master curve to a

line approximately parallel to the direct summation is much more gradual and takes

place over at least three decades in 1"‘, Figure 17. Also we are still left with

the fact that the threshold ('p would have to be displaced down to at least below

=5 L
10 I"N.

One possibility that can be discarded is that the recalculation of the FLL
elastic constant by Brandt will produce enough displacement of the threshold to
account for the discrepancy. Schmucker and Brandt[41] have redetermined u .

L W
using Brandt's theory and the line representing the recalculated u o for Nb at
23
b = .5 and b.29K is shown in Figure 16. There is only a small change in u e
o
and a small shift of the threshold criterion at this b; at larger b however the
difference is much rreater.

Another possible way to circumvent the threshold criterion is the one first
suggested by Fietz and Webb[h3]. They argued that perhaps groups of elementary
pins should be considered as superpinning centers. To move the threshold down
r . . . l\

5 orders of magnitude would require the bundling of 10" defects into a single
supercenter. Such a pin would have dimensions so large it could no long=r be con-

« 3 i e 3t 1Y e o Sy ) e ¢ s 43 s 3
iderd 1 point pinning u\ntvr[.‘l..*-t]. It is also difficult to imagine such a

mechanism giving rise to a Q that is independent of pin density on a master curve.




The most realistic possibility is that FL dislocations

effective compliance of the FLL so as to permit the threshold criterion to b
fulfilled{78]. If we consider a one dimensional model of the FLL (Figure 20) we

can think of nearby dislocations as weak springs in that chain of vortices

The bowing out of the dislocation in response to f‘p will give a spring constant

k which is inversely proportional to the dislocation loop length squared and dire

proportional to the line tension of the dislocation which in turn is proportional

to VC(%(CJ); [79]. Thus the stiffness of this "weak spring" would essentially have
)

FLL.

the same magnetic field and temperature dependence as u £ of the perfect
- e

Furthermore since different pins will be at different distances from dislocations,

the effective k will vary greatly and some pins will be above threshold

will be below. As f‘p is increased the approach to the direct summaticon will be

rather gradual as observed. Finally the FL dislocation hypothesis offers a way
to explain flux lattice history effects on I"D[SO— 32]. Interestingly F_?}}»f«,-r and
Gey[32] find that very strong pins do not show flux lattice history effects. This

observation now can be understood since these are already almost t

summation line and their contribution will not be affected much by increasing

the FL dislocation density and thus lowering the threshold f . While much work

Y

remains to be done to make this FL. dislocation hypothesis a quantitative model
I believe that it is the most promising theoretical direction in which to seek the
answer to the low threshold criterion.

Finally it should be noted that any relaxation of the elastic constraints
present in the infinite FLL will have the same effect as introducing a weak

1

spring. In particular the presence of a free surface parallel to the flux line

should have the effect of drastically decreasing the effective k
pins near the surface. There is considerable evidence in the literature[80-83]
ts that defects near a surface are more effective in pinning

1

which sugges

d while some

o ]’




larger Q's than those in the hulk). Our eroup at Cornell has done an "i".;"!'l"" nt
in which we neutron irradiated triangular Nb prisms at rcom temperature to form
disloecation loops and measurcd the anisotropy of the critical current with
respect to the angle between the magnetic field direction and one of the face

1 + r

of the prism. The size of the current peak when the field is parallel f
is an indication of the surface contribution to the critical current. As illus-
trated in Figure 21 we found that the irradiation increased the heihi

surface current peak above the background bulk critical e

as the breadth of the peak. Since irradiation does not change other prop-
orties of the surface such as roughness this result directly proves that disloca-
tion loops near the surface are more effective in pinning flux than those in the
pulk. The probable reason for this is the decrease in the threshold criterion

and the increase in Q caused by the relaxation of the elastic constraints on the

FLL due to the presence of the nearby surface.
EXPERIMENTAL IMPLLICATIONS OF A MASTER CURVE FOR SUMMATION

If the summation master curve in Figure 17 is to be generally useful it
should be able to be applied to defects other than dislocation loops and voids.
Hence it is important to check to see if quantitative experiments other than the
irradiation experiments fit on the curve. Unfortunately such experiments where

both f and p are well known are rare. One such experiment is the experiment of
p b f

Lippmann, Schelten and Schmatz[84] who measure F_ and p for large normal pre-
D

cipitates of Nb.N in Nb. Their value of Q at b = .55 together wit

¢

of f‘r is included on Fig. 17 as the open triangle. It is evident

lies near the continuation of the master curve as well as almost




*

&
=
~

D

line representing the Cf “ approximation to the statistic:
;\

The data of Antesberger and Ullmaier on flux pinning

in Nb -Ta also fits. Although p ... is dec¢reased slightly from its v i Wb L
«T3 -t‘l‘ ell
shift of the Cf © line in Fig. 17 is only to Just above the line labelled
D

ehmucker and Brandt. The Q values determined from their measurements on sam-

) 19 =3 - 1 =3 18 -3 o A
ples with p = 4.7x10 “m ~, 1.7Tx10 ' and bx10 m are Q = 1.4x10 N,
e E

_ -12 . - X : ;
1.8%x10 "°N and 1.5x10 “N respectively at b = .55. The 1}‘ values estimated for

: =11, : : . )
their precipitates are about 10 N which puts their points well above the

line and in good agreement with the points for the larger voids on the master
curve.

Final there are a number of experiments on flux pinning by dislocations

1 ‘

in deformed Nb[86-88]. Theoretically the 1'” between a perpendicular dislocation

-13

and the FLL is <10 N about. the same as for a large dislocation loop whereas

the :‘1 values extracted from the data using the Labusch at least one
)
i 1l
order oi imply a Q = 10 - 10 " ywhich is close to the master

curve.

*¥ They also measured <f“> by measuring the mean square displacement <u®> of a flux
line from neutron diffraction experiments and converting to <f<> usi

They, found good agreement between the calculated f,, and <f
<u?>*? peasured are greater than :1,“‘/\‘ for this large precipitat it is not clear
whether the presence ol Fli dislocations and their effect on f kK would be detected
by this experiment. Neutron diffraction experiments on the weakly pinning dis-
location loop samples would be very useful in deciding why the threshold criterion
is fulfilled.

¥ Based on experiments on single crystal Nb samples containing disk-shaped pre-
cipitates of diameter D and thickness t, Antesberger and Ullmaier[85] have claimed
that only a Cf,° tion will explain the F, difference measured between the
situation when ld is parallel to a <100> direction and when it is parallel
to a <111> direction. Such a claim is in fact based on a miscaleulation of f,
which situation i8 proportional to t ximum cross=sectional arca of
the particle on a plare perpendicular to the direction of motion of the flux lat-
tice. Proceeding t o tl ring the me way they do, 1 find that
1'{‘ ‘..\;".’ &), S o A as I': « <L, > 2l > « oDt l“. [he rat
“100/. 10:."_ 1““:‘ ‘ B :Hl _'/]11 _in ‘ .
i'lf)n” 18 1.00 D/t. Since the observed D/t ratios are 8-10 a linear swunma-=

D
=213
tion which is indic

by the results of large voids can account for their

measured ratios F




Let us then use this experimental master sumn on curve estimate
elementary interaction forces between the FLL and the other i AatiOlhepr
defects, i.e., cascades and Frenkel pairs. From Fig. 10 we find i 1

. 3 s 4T ks i Al oh
for dilute cascades of about 3x10 N. On the master curve 1 i value

. .=k . , - PR — S E
ponds to an f value of 10 N. For the most dilute array of Frenkel pall

t

-18

Q = 5x10 N. If we extend the master curve slightly we see that Ul val

; . . Rl 0 F P "
Q corresponds to an f of about 2x10 - It is diffrcult ! 1

Y\
estimates for f for either of these defects but one can make crude attemy
E

For example one might consider the w650 atom depleted zone in the center o

3 MeV cascade to be an incipient

void of 650 atoms with

a volume 1.2x10

void and calculate the pinning expected

20 ; .
1 for

p

The

)
m

&

o
v ue
vy, =
o

5}

=hBe < S 1 T ; - .
=5x10 N which is within a factor of two of the experimentally determined value.

The interaction energy due to the

and a Frenkel defect has been estimated by Ullmaier et al.[T7] to be E = ¢ A
where f‘b is the elastic¢ energy of a Frenkel pair which they set a 5eV and A
is the change in Young's modulus between the superconducting and normal state
B8 -l , : . :
Nt (A¥X/Y = 10 ). Following the methods outlined above f ~can be established
i
. Il
to be =k E (1-b)/2. Using the numbers for Nb f = 10 N in reasonable

£
}\

> dielastic interaction between an

P

isolated

’ . . =15 : .
agreement with the value of 2x10 N determined from Q and the master curve.

CONCLUSIONS

[t is apparent that

have provided and continue

of summation mode

introduction of singleyswell

pinning centers. The low

various numbers of defects with

flux pinning experiments

chare

ature irree

to provide important clues as to the

are that they

of zuch experiments

icterized defect species that approximate

ttions allow the introduction

v

distribution to test ti

ant size

correct

V¢

riex

in irradiated superconductors

form

point

Il




of summation whereas higher temperature irradiations allow the intro-
duction of dislocation loops and voids of controlled size for which f can be }

accurately estimated. The results to date indicate that the pinning force density

is proportional to point pin density below pin densities of 5x10 "m and that at
moderate reduced magnetic field (b = .5) neither the direct summation nor the

statistical theory of Labusch are satistfactory summation models. Rather it has

been shown that an empirical master summation curve can be constructed which is

parallel or just below the direct summation at high fp but decreases approximately

o
[= 3 o . 5. 9 ) > " 3
as at low f . Extending this master curve to other reduced fields and tem-

p
peratures should be a high priority objective of both future experiments and

theoretical investigaticns.
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Figure 1.

Figure 2.

Figure 3.

Figure L.

Figure 5.

=30

FIGURE CAPTIONS

Bright field transmission electron micrographs showing the dramatic
increase in the density, and decrease in size of black spot (disloca-
tion loop) radiation damage as the oxygen content, (in wt. ppm) of

niobium is increased.

Histograms of the density of dislocation loops of diameter D as a
function of D determined from the electron micrographs of Figure 1
showing the change in the size distribution of the loops with oxygen

content.

Global pinning force density Fp versus reduced magnetic induction for
niobium irradiated with 3 MeV electrons at 4.2K from [7]. The curves
represent different electron fluences and are labeled in terms of the
resistivity increment Ap produced by the irradiation: o , Ap = 2.6nQcm;

Q, Ap = 5.4nQcm; @, Ap = 17.5n0cm; &, Ap = 51lnQcm.

Global pinning force density I"p vs. reduced magnetic induction for

niobium irradiated with fast neutrons at 4.6K from [15]. The curves

5 1= - 16
represent different neutron fluences: @, 7.1x10 )nvt,; e, D.QxlO]'txxv?.;

" 18 . : 18 " 18
Q, 1.2x10 “nvt; ©, 2.6x10" nvt; @, 4.7x10" nvt.

Global force density F_ vs. reduced magnetic induction for niobium

p
irradiated with fast neutrons at room temperature to a fluence of

19 5 :
9x10" “nvt from [Q.L]. The curves represent different oxygen contents in

wi. ppm: 0 , 90k ppm; B 480 ppm; &, 250 ppm; @, 10 ppm.
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Figure 6. Global pinning force density I-'[) versus reduced magnetic induction for
. - . ~+ . .
niobium irradiated with 3.5 MeV Ni ions at elevated temperature from

[24]. Curves represent different doses expressed in displacements
per atom (DPA), irradiation temperatures Tirr and impurity content:
g ) - ~ . ey WA O
7 66 DPA, ﬁirr = 780°C, 140 ppm 0; &, 83 DPA, lirr = 780°C,
. < b m — Ox . & Y2 m =
140 ppm 0; O , 55 DPA, l’n'r‘ = 800°C, 140 ppm 0; @ . 61 DPA, ]ir'r

785°C; ©, 130 DPA, 'l‘in‘ = 865°C, 1 at % Zr, 570 ppm O.

Figure 7. Global pinning force density }"p versus reduced magnetic induction

D
for niobium irradiated with a fast neutron fluence of W1x10°° nvt
(E > 1 MeV) from [25]. Curves represent samples irradiated at various

o

elevated temperatures.

Figure 8. Global pinning force density I“p versus reduced magnetic induction b

for the sample in Figure 6 irradiated at 800°C to 55 DPA. The curves

)

represent different measuring temperatures: v, 8.5K; A\, 6.5k; O, L.9K;
O, h.2K; 0, 3.8K.

Figure 9. The ratio of the specific pinning force Q = Fp/p to the Q = @ at

23 _-
p = 10 3m 3 plotted versus p.

Figure 10. The specific pinning force Q = Fp/p plotted versus defect diameter D.

For voids the open circles represent neutron irradiated samples while

- -+ . . . 3
the closed circles represent Ni ion irradiated samples. The down-

ward arrows for Frenkel defects and cascades represent the trend of the

data as the density of these defects is increased.

Figure 11. A map of w, the square of the reduced order parameter for b = .8 from

[66].
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Figure 12.

Figure 13.

Figure 1b.

Figure 15.

Figure 16.

Figure 17.

_)‘.()-

A contour map of the elementary interaction force f* in arbitrary

units between a dislocation loop (or any defect with radial symmetry

about the field direction) as a function of the coordinate of the
center of the loop. The crosses represent the position of vortex
cores. Although only part of the unit cell of the FLL is shown the

symmetry of the FLL can be used to obtain the fully periodic inter-

action force map.

The maximum elementary interaction force fI for a dislocation loop
)

in Nb at b = .55 and T = 4.2K evaluated at (x = a /U; y = 0) as

a function of the loop diameter D.

The maximum elementary interaction force Fp for a void in Nb at

b = .55 and T = 4.2K evaluated at (x = ao/h; y = 0) as a function of

the void diameter D.

The specific pinning force Q = Fp/p versus dislocation loop diameter
[21] in Nb at b = .55 and T = k.2K. Lines representing the direct
Y
summation qQ = fp and the statistical theory Q = Cfﬂ‘ are also drawn
t

for comparison.

The specific pinning force Q = Fl/o versus void diameter([24,25] in
)

Nb at b = .55 at T = 4.2K. Lines representing the direct summation

2,
Q= fp and the statistical theory Q = Ctpk are also drawn for compariso

o~

The specific pinning force Q = F /p versus elementary interaction force
p

f for defects in Nb at b = .55 and T = L.2K. The open square repre-

P

sents the dislocation loop data[21], the open circles the data on voids

[25] produced by neutron irradiation at high temperatures and the clos

. e 3 .-+
circles the data on voids produced by Ni bombardment at high temper:




Figure 18.

Figure 19.

Figure

Figure

2

-151-

[24]. The triangle represents data of Lippmann, Schelten and Scehmatz[ 84

on large Nb N precipitates in Nb.

mation Q = t.} and the statistical theory of Labusch Q = ’ are dr
2 !

together with a line representing the Labusch stat istical theo
the recalculated FLL elastic constants from Cchmucker and Branadt (L1

a) Periodic elementary interaction potential between a defect and

Lines representing the direct sum-
AW

using

}-

the FLL as a function of aistance X. b) Elementary interaction force

versus x for the potential above. The slope of the dashed line rep-

resents the spring constant k of the FLL (see text). All FLL positions

are stable. c¢) Effect of increasing 1'} is that an instability
)
develops and only positions between the intersection of the dashed

line with the curve (minimum force) and f are stabl

is exceeded. i) f is now well above threshold and the minimu
D

(intersection) is above zero. The increase of minimum force ab

ero will not occur for uthe ngle potential well u i pr

sent the defect-FLL interaction.

Theoretical specific pinning force Q = P'p/n 7S I“p above the threshold

f‘p for a single well having a single period triangular force curve
inl

(Labusch theory), the Cf‘p' approximation to that result, and the

summation based on the periodic potential of Fig. 18a.

Simple schematic vortex and Spring model of the deformation of the

(bowing out FL dislocations

FLL showing the effect of weak

The surface contribution to the ceritical current of & triangular

prism as a function of the angle ¢ between the magnet ic field and

surface. The different curves show the increase in this contributio

with neutron irradiation at room temperature indicating that defects

(dislocation !nw!‘:‘-) near the surface are more effective in pinning

than those in the bulk.
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TABLE I

Important Parameters cf lrradiated Samples
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